Stent revascularization restores cortical blood flow and reverses tissue hypoxia in atherosclerotic renal artery stenosis but fails to reverse inflammatory pathways or glomerular filtration rate.
نویسندگان
چکیده
BACKGROUND Atherosclerotic renal artery stenosis (ARAS) is known to reduce renal blood flow, glomerular filtration rate (GFR) and amplify kidney hypoxia, but the relationships between these factors and tubulointerstitial injury in the poststenotic kidney are poorly understood. The purpose of this study was to examine the effect of renal revascularization in ARAS on renal tissue hypoxia and renal injury. METHODS AND RESULTS Inpatient studies were performed in patients with ARAS (n=17; >60% occlusion) before and 3 months after stent revascularization, or in patients with essential hypertension (n=32), during fixed Na(+) intake and angiotensin converting enzyme/angiotensin receptors blockers Rx. Single kidney cortical, medullary perfusion, and renal blood flow were measured using multidetector computed tomography, and GFR by iothalamate clearance. Tissue deoxyhemoglobin levels (R(2)*) were measured by blood oxygen level-dependent MRI at 3T, as was fractional kidney hypoxia (percentage of axial area with R(2)*>30/s). In addition, we measured renal vein levels of neutrophil gelatinase-associated lipocalin, monocyte chemoattractant protein-1, and tumor necrosis factor-α. Pre-stent single kidney renal blood flow, perfusion, and GFR were reduced in the poststenotic kidney. Renal vein neutrophil gelatinase-associated lipocalin, tumor necrosis factor-α, monocyte chemoattractant protein-1, and fractional hypoxia were higher in untreated ARAS than in essential hypertension. After stent revascularization, fractional hypoxia fell (P<0.002) with increased cortical perfusion and blood flow, whereas GFR and neutrophil gelatinase-associated lipocalin, monocyte chemoattractant protein-1, and tumor necrosis factor-α remained unchanged. CONCLUSIONS These data demonstrate that despite reversal of renal hypoxia and partial restoration of renal blood flow after revascularization, inflammatory cytokines and injury biomarkers remained elevated and GFR failed to recover in ARAS. Restoration of vessel patency alone failed to reverse tubulointerstitial damage and partly explains the limited clinical benefit of renal stenting. These results identify potential therapeutic targets for recovery of kidney function in renovascular disease.
منابع مشابه
Management of atherosclerotic renovascular disease after Cardiovascular Outcomes in Renal Atherosclerotic Lesions (CORAL).
Many patients with occlusive atherosclerotic renovascular disease (ARVD) may be managed effectively with medical therapy for several years without endovascular stenting, as demonstrated by randomized, prospective trials including the Cardiovascular Outcomes in Renal Atherosclerotic Lesions (CORAL) trial, the Angioplasty and Stenting for Renal Artery Lesions (ASTRAL) trial and the Stent Placemen...
متن کاملRevascularization of Atherosclerotic Renal ArteryStenosis in Selected Patients: Benefits on Kidneyand Cardiac Function
The atherosclerotic renal artery stenosis is mostly diagnosed in the elderly and often coexists with other vascular diseases. It is a progressive disease that can lead to resistant hypertension and progressive loss of functional renal mass. Additionally, it has been associated with ischemic heart disease and increased cardiovascular morbidity and mortality. The treatment of atherosclerotic rena...
متن کاملPersistent kidney dysfunction in swine renal artery stenosis correlates with outer cortical microvascular remodeling.
Percutaneous transluminal renal stenting (PTRS) does not consistently improve renal function in patients with atherosclerotic renovascular disease, but the mechanisms underlying irreversible kidney injury have not been fully elucidated. We hypothesized that renal dysfunction after PTRS is linked to ongoing renal microvascular (MV) remodeling. Pigs were studied after 10 wk of atherosclerosis and...
متن کاملA mitochondrial permeability transition pore inhibitor improves renal outcomes after revascularization in experimental atherosclerotic renal artery stenosis.
Revascularization improves blood pressure but not renal function in most patients with atherosclerotic renal artery stenosis (ARAS), possibly related to injury incurred during renal reperfusion. Bendavia, a novel tetrapeptide that inhibits mitochondrial permeability transition pore opening, reduces apoptosis, oxidative stress, and ischemia-reperfusion injury in experimental models. However, its...
متن کاملPrediction and assessment of responses to renal artery revascularization with dynamic contrast-enhanced magnetic resonance imaging: a pilot study.
The aim of this study was to assess the potential of dynamic contrast-enhanced (DCE) MRI to predict and evaluate functional outcomes after renal artery revascularization for renal artery stenosis (RAS). The single-kidney glomerular filtration rate (SK-GFR) was measured in 15 patients with atherosclerotic RAS with DCE-MRI and radioisotopes at baseline and 4 mo after revascularization. DCE-MRI al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation. Cardiovascular interventions
دوره 6 4 شماره
صفحات -
تاریخ انتشار 2013